607 research outputs found

    Evaluation of Nanometer Cutting Tool Edge for Nanofabrication

    Get PDF

    In-situ evaluation of the pitch of a reflective-type scale grating by using a mode-locked femtosecond laser

    Get PDF
    Major modifications are made to the setup and signal processing of the method of in-situ measurement of the pitch of a diffraction grating based on the angles of diffraction of the diffracted optical frequency comb laser emanated from the grating. In the method, the improvement of the uncertainty of in-situ pitch measurement can be expected since every mode in the diffracted optical frequency comb laser can be utilized. Instead of employing a Fabry-PĂ©rot etalon for the separation of the neighboring modes in the group of the diffracted laser beams, the weight-of-mass method is introduced in the method to detect the light wavelength in the Littrow configuration. An attempt is also made to reduce the influence of the non-uniform spectrum of the optical comb laser employed in the setup through normalization operation. In addition, an optical alignment technique with the employment of a retroreflector is introduced for the precise alignment of optical components in the setup. Furthermore, a mathematical model of the pitch measurement by the proposed method is established, and theoretical analysis on the uncertainty of pitch measurement is carried out based on the guide to the expression of uncertainty in measurement (GUM). Keywords: diffraction grating; grating pitch; mode-locked femtosecond laser; laser diffraction; diffraction equation; measurement uncertainty analysi

    A Chaotic Clonal Selection Algorithm and Its Application to Synthesize Multiple-Valued Logic Function

    Get PDF
    In this paper, a chaotic clonal selection algorithm (CCSA) is proposed to synthesize multiple-valued logic (MVL) functions. The MVL function is realized in a multiple-valued sum-of-products expression where product is indicated by MIN and sum by TSUM. The proposed CCSA, in which chaos is incorporated into the clonal selection algorithm to initialize antibodies and maintain the population diversity, is utilized to learn a given target MVL truth table. Furthermore, an adaptive length strategy of antibodies is also introduced to reduce the computational complexity, whereas an improved affinity function enables the algorithm to find less product terms for an MVL function. Simulation results based on a large number of MVL functions demonstrate the efficiency of the proposed method when compared with other traditional methodologies. © 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc

    Graph Planarization Problem Optimization Based on Triple-Valued Gravitational Search Algorithm

    Get PDF
    This article presents a triple-valued gravitational search algorithm (TGSA) to tackle the graph planarization problem (GPP). GPP is one of the most important tasks in graph theory, and has proved to be an NP-hard problem. To solve it, TGSA uses a triple-valued encoding scheme and models the search space into a triangular hypercube quantitatively based on the well-known single-row routing representation method. The agents in TGSA, whose interactions are driven by the gravity law, move toward the global optimal position gradually. The position updating rule for each agent is based on two indices: one is a velocity index which is a function of the current velocity of the agent, and the other is a population index based on the cumulative information in the whole population. To verify the performance of the algorithm, 21 benchmark instances are tested. Experimental results indicate that TGSA can solve the GPP by finding its maximum planar subgraph and embedding the resulting edges into a plane simultaneously. Compared with traditional algorithms, a novelty of TGSA is that it can find multiple optimal solutions for the GPP. Comparative results also demonstrate that TGSA outperforms the traditional meta-heuristics in terms of the solution qualities within reasonable computational times. © 2013 Institute of Electrical Engineers of Japan

    Electrocatalytic activity and volatile product selectivity for nitrate reduction at tin-modified Pt(100), Pd(100) and Pd–Pt(100) single crystal electrodes in acidic media

    Get PDF
    We prepared Sn-modified Pt(100), Pd(100) and Pd–Pt(100) single crystal electrodes and investigated the nitrate reduction reaction (NO3RR) activity and the product selectivity for them using online electrochemical mass spectroscopy (OLEMS), also known as differential electrochemical mass spectroscopy (DEMS). OLEMS measurements allowed us to quantify volatile products of N2, N2O and NO and confirm the production of N2 at Sn/Pd(100) but not at Sn/Pt(100). Pd-doping to Pt(100) with a 3 atomic % increased the product selectivity for the NO3RR to N2. These results indicate that the presence of Pd in the (100) surface is the key to produce N2, which seems to be related to the hydrogen adsorption energy to the metal surface. The suppression of hydrogenation of intermediate species at the electrode surface could lead to the production of N2. This work will guide us to understand N2 production mechanism for the NO3RR and develop highly selective electrocatalysts for denitrification

    Evaluation of a focused laser spot diameter for an optical angle sensor

    Get PDF
    This paper presents a new method for measurement of a focused laser beam diameter by using a single cell photodiode (PD) for achievement of further higher measurement sensitivity of an optical angle sensor based on laser autocollimation. The proposed method referred to as the PD edge method utilizes an edge of the PD active cell in the same manner as the conventional knife-edge method, which is often employed for the evaluation of light spot diameter. The proposed PD edge method is expected to evaluate the focused laser beam diameter without the influence of light diffraction, which is often observed in the case of knife-edge method. After a description of the proposed PD edge method, its feasibility is demonstrated throughout the experiments by using a developed prototype optical setup

    DNA repair factor RAD18 and DNA polymerase PolÎș confer tolerance of oncogenic DNA replication stress

    Get PDF
    The mechanisms by which neoplastic cells tolerate oncogene-induced DNA replication stress are poorly understood. Cyclin-dependent kinase 2 (CDK2) is a major mediator of oncogenic DNA replication stress. In this study, we show that CDK2-inducing stimuli (including Cyclin E overexpression, oncogenic RAS, and WEE1 inhibition) activate the DNA repair protein RAD18. CDK2-induced RAD18 activation required initiation of DNA synthesis and was repressed by p53. RAD18 and its effector, DNA polymerase Îș (PolÎș), sustained ongoing DNA synthesis in cells harboring elevated CDK2 activity. RAD18-deficient cells aberrantly accumulated single-stranded DNA (ssDNA) after CDK2 activation. In RAD18-depleted cells, the G2/M checkpoint was necessary to prevent mitotic entry with persistent ssDNA. Rad18 −/− and PolÎș −/− cells were highly sensitive to the WEE1 inhibitor MK-1775 (which simultaneously activates CDK2 and abrogates the G2/M checkpoint). Collectively, our results show that the RAD18–PolÎș signaling axis allows tolerance of CDK2-mediated oncogenic stress and may allow neoplastic cells to breach tumorigenic barriers

    Pan‑cancer analysis of transmembrane protease serine 2 and cathepsin L that mediate cellular SARS‑CoV‑2 infection leading to COVID-19

    Get PDF
    Severe acute respiratory syndrome (SARS) coronavirus‑2 (SARS‑CoV2) is the cause of a new disease (COVID‑19) which has evolved into a pandemic during the first half of 2020. Older age, male sex and certain underlying diseases, including cancer, appear to significantly increase the risk for severe COVID‑19. SARS‑CoV‑2 infection of host cells is facilitated by the angiotensin‑converting enzyme 2 (ACE‑2), and by transmembrane protease serine 2 (TMPRSS2) and other host cell proteases such as cathepsin L (CTSL). With the exception of ACE‑2, a systematic analysis of these two other SARS‑CoV2 infection mediators in malignancies is lacking. Here, we analysed genetic alteration, RNA expression, and DNA methylation of TMPRSS2 and CTSL across a wide spectrum of tumors and controls. TMPRSS2 was overexpressed in cervical squamous cell carcinoma and endocervical adenocarcinoma, colon adenocarcinoma, prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), uterine corpus endometrial carcinoma and uterine carcinosarcoma, with PRAD and READ exhibiting the highest expression of all cancers. CTSL was upregulated in lymphoid neoplasm diffuse large B‑cell lymphoma, oesophageal carcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma, lower grade glioma, pancreatic adenocarcinoma, skin cutaneous melanoma, stomach adenocarcinoma, and thymoma. Hypo‑methylation of both genes was evident in most cases where they have been highly upregulated. We have expanded on our observations by including data relating to mutations and copy number alterations at pan‑cancer level. The novel hypotheses that are stemming out of these data need to be further investigated and validated in large clinical studies
    • 

    corecore